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It’s not as simple as biomass




management?
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Current state of knowledge on soil sequestration science

Sanjari (2008)

Pringle (2011)

Badgery (2014)

Chan (2011)
Conrad (2017)

Radrizzani (2011)

Intensive rotational vs.
conventional

Time-controlled grazing vs.
conventional

Continuous, rotational, Time-
controlled and exclosure

Heavy vs. moderate grazing
pressure

Cropping to permanent pasture

Pasture phase in cropping + P

addition

Leucaena (N fixation)

Leucaena (N fixation)

Northern Territory

SEQLD

AllQLD

Charters Towers

Central West NSW

Wagga Wagga

Central Queensland

Central Queensland

No significant change

1.37 t C/ha/yr*

Decline in SOC under TCG grazing

No significant change

0.78 t C ha/yr

0.5-0.7 t C ha/yr

0.28 t C ha/yr

0.76 t C ha/yr

*non-significant
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Soil organic matter and soil organic carbon

SOM*

Resistant C
charcoal

Labile SOC (e.g.
POM and DOM)

SOM = 1-8% of soil mass
[*'“58% of SOM = SOC ]




How much soil carbon can we sequester —nutrients

e C sequestration controlled by least limiting factor
* Nitrogen critical for building stable carbon

* Other nutrients also required P, K, S, Ca Nitrogen required to build 1t Cha'!

Resistant C

83 -180
kg N ha't

Labile SOC (e.g.
POM and DOM)

*~58% of SOM = SOC



How much soil carbon can we sequester —clay content
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Barriers to soil carbon measurement —

spatial variability

* High spatial variability due to soil type, micro-
relief, pasture composition and production and
grazing pattern

* Substantially reduces sensitivity of traditional TOC
estimation via soil sampling

e Leads to high sampling costs to overcome spatial error
* Reduces carbon sequestration options available to farmers
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Variation in total organic carbon (%) per depth for each soil profile (N=23) for the two 10
hectare sampling areas at Goondiwindi.




High spatial variability in grazed pastures
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Barriers to soil carbon measurement — drought
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Barriers to soil carbon measurement — changes over time
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Pasture dieback 2021




Measuring carbon: Stocks vs flows (profit/loss)
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Stocks vs flows (profit/loss)
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Measuring carbon: Stocks vs flows (profit/loss)

C stocks (t/ha)
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Measuring carbon: Stocks vs flows (profit/loss)
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Future directions - 3 tiered approach to measuring SOC

Technology suite:

Measuring soil | - Flux towers
carbon flows Accounting for - Process models
(smooth “peaks and landscape - Remote sensing

troughs” in data, variability
early prediction)

Upscaling at low
cost



CO, Flux towers

Measure high-resolution CO,, water and
energy (radiation) fluxes

Provides Sample area of the flux towers
* accurate actual (not potential) evapotranspiration - Water Use Efficiency
* Carbon uptake and release
* Albedo (reflectance) — indicator of pasture palatability and digestibility
* Combine with time-lapse camera (plant phenology) and soil moisture probes

Integrate over large areas (10-50 ha)
Reliable, robust, remote, low maintenance and cost (relative)




Australian Flux Networks TE R N

OzFlux
Land-Atmosphere Observatory




Flux towers: Climate and Carbon at Longreach
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Flux towers: Climate and Carbon at Longreach
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Flux towers: Understanding of how we sequester soil carbon

* Combine with management and pasture growth

information to understand sequestration mechanisms
—i.e. reduced water-use efficiency from overgrazing
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https://www.youtube.com/watch?v=C-5bBPVJ-1k&feature=youtu.be

Phenocam time-lapse images of pasture response to rain from overgrazed paddock at
Goondiwindi. 19 mm of rain fell on the 16" January, with an additional 210 mm falling
over the remainder of the displayed period. Red arrow highlights the surviving (just)
Buffel tussock, remaining (Qld Bluegrass) germinated from seed.

The tussock was able to respond substantially faster to the rainfall, reaching flowering
before the Bluegrass had established full ground cover (11t Feb). Over the same
period 60 mm of evapotranspiration was measured (figure on left), equating to ~40%
of total seasonal rainfall being lost before any pasture production could occur.


https://www.youtube.com/watch?v=C-5bBPVJ-1k&feature=youtu.be

Remote sensing: Upscaling from paddock scale to property

Step 4 — Short-
term validation
with portable flux
towers

Step 1: model calibration at flux tower sites
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Modelling: Accounting for trade-offs
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Flux Site - Soil Carbon Dynamics
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 More flux sites are needed for calibration to capture the variability among landscapes.
* Models can be used anywhere once calibrated with multiple flux sites.



Project aim: To determine if innovative grazing management can
increase soil carbon stocks and the sustainability of Australian beef

Soil properties and carbon stocks Water and carbon balance Farmer well-being
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* Current knowledge — YES opportunities but future focus?

* Drivers of sequestration — limiting factor

* Barriers to soil carbon measurement — spatial variability

* Barriers to soil carbon measurement — temporal variability
e Measuring carbon: Stocks vs flows (profit/loss)

* Model Measure method
* Flux towers
* Remote sensing
* Modelling



