Increasing sensitivity for detecting small changes in soil carbon over highly variable landscapes

David Rowlings Peter Grace Trung Nguyen

d.rowlings@qut.edu.au

It's not as simple as biomass

Grazing management?

16.6 ± 3.2 t ha⁻¹ SOC (0-10 cm)

Current state of knowledge on soil sequestration science

Reference	System	Study area	Increase/Decrease C	
Schatz (2020)	Intensive rotational vs. conventional	Northern Territory	No significant change	
Sanjari (2008)	Time-controlled grazing vs. conventional	SE QLD	1.37 t C/ha/yr*	
Allen (2013)	Continuous, rotational, Time- controlled and exclosure	All QLD	Decline in SOC under TCG grazing	Grazing management
Pringle (2011)	Heavy vs. moderate grazing pressure	Charters Towers	No significant change	
Badgery (2014)	Cropping to permanent pasture	Central West NSW	0.78 t C ha/yr	Crops to pastures
Chan (2011)	Pasture phase in cropping + P addition	Wagga Wagga	0.5-0.7 t C ha/yr	
Conrad (2017)	Leucaena (N fixation)	Central Queensland	0.28 t C ha/yr	
Radrizzani (2011)	Leucaena (N fixation)	Central Queensland	0.76 t C ha/yr	Desmanthus?

*non-significant

Soil organic matter and soil organic carbon

How much soil carbon can we sequester –*nutrients*

- C sequestration controlled by least limiting factor
- Nitrogen critical for building stable carbon
 - Other nutrients also required P, K, S, Ca

How much soil carbon can we sequester –<u>clay content</u>

Barriers to soil carbon measurement – <u>spatial variability</u>

- High spatial variability due to soil type, microrelief, pasture composition and production and grazing pattern
 - Substantially reduces sensitivity of traditional TOC estimation via soil sampling
 - Leads to high sampling costs to overcome spatial error
 - Reduces carbon sequestration options available to farmers

Variation in total organic carbon (%) per depth for each soil profile (N=23) for the two 10 hectare sampling areas at Goondiwindi.

High spatial variability in grazed pastures

Site 1 = 53 t C ha⁻¹ (SD = 10.6) n = 24 Site 2 = 71 t C ha⁻¹ (SD = 12.7) n = 20

To achieve a statistically significant change in SOC >20-25 t C ha⁻¹ required

Over 10 years = 2.0 - 2.5 t C ha⁻¹ yr⁻¹

Barriers to soil carbon measurement – <u>drought</u>

Barriers to soil carbon measurement – changes over time

months Conventional soil sampling 20 (TOC) - >30% seasonal variation 18 16 14 C core⁻¹ 12 Stable soil fraction 10 60 6 0 MAY AUG FEB NOV

Variation *total C* and *stable C* fractions over 12

Keeping carbon?

Pasture dieback 2021

Measuring carbon: Stocks vs flows (profit/loss)

Measuring carbon: Stocks vs flows (profit/loss)

■ C stocks/assets ■ Overall gain in C/profit margin

Measuring carbon: Stocks vs flows (profit/loss)

C stocks/assets Overall gain in C/profit margin ——Annual C gain/loss ……… Linear (Annual C gain/loss)

Future directions - 3 tiered approach to measuring SOC

cost

Technology suite:

- Flux towers
- Process models
- Remote sensing

CO₂ Flux towers

- Measure high-resolution CO₂, water and energy (radiation) fluxes
- Provides
 - accurate actual (not potential) evapotranspiration \rightarrow Water Use Efficiency
 - Carbon uptake and release
 - Albedo (reflectance) indicator of pasture palatability and digestibility
 - Combine with time-lapse camera (plant phenology) and soil moisture probes
- Integrate over large areas (10-50 ha)
- Reliable, robust, remote, low maintenance and cost (relative)

Sample area of the flux towers

Australian Flux Networks

10

· T.E

* 1.

ATT

44

+#

南

OzFlux Land-Atmosphere Observatory

一一年 花秋

Flux towers: Climate and Carbon at Longreach

Flux towers: Climate and Carbon at Longreach

Flux towers: Understanding of *how* we sequester soil carbon

 Combine with management and pasture growth information to understand sequestration mechanisms

 i.e. reduced water-use efficiency from overgrazing

https://www.youtube.com/watch?v=C-5bBPVJ-1k&feature=youtu.be

Phenocam time-lapse images of pasture response to rain from overgrazed paddock at Goondiwindi. 19 mm of rain fell on the 16th January, with an additional 210 mm falling over the remainder of the displayed period. Red arrow highlights the surviving (just) Buffel tussock, remaining (Qld Bluegrass) germinated from seed.

The tussock was able to respond substantially faster to the rainfall, reaching flowering before the Bluegrass had established full ground cover (11th Feb). Over the same period 60 mm of evapotranspiration was measured (figure on left), equating to ~40% of total seasonal rainfall being lost before any pasture production could occur.

Remote sensing: *Upscaling* from paddock scale to property

Step 1: model calibration at flux tower sites

Step 2: New property broken into precision CEA's

ime = 2015-11-30 ima - 2015 12 2 -2.7772 -2.7774 2 F -2.777 -2.7770 -2.7772 -2.7774 -2.7776 -2.7778 -2 778 -2 778 time = 2016-07-31 time = 2016-09-30 time = 2016-10-31 time = 2016-08-31 -2.777 -2.7772 -2.7774 E -2.7776 -2.7778 --2 7782 time = 2016-11-30 time = 2016-12-31 time = 2017-01-31 time = 2017.02.2 -2.7770 -2.7772 -2.7774 e -2.7776 -2.7778 -2 778

Step 3 – model updated with monthly biomass quantity and quality per CEA

Modelling: Accounting for *trade-offs*

Flux Site - Soil Carbon Dynamics

- More flux sites are needed for calibration to capture the variability among landscapes.
- Models can be used anywhere once calibrated with multiple flux sites.

Project aim: To determine if innovative grazing management can increase soil carbon stocks and the sustainability of Australian beef

- Current knowledge YES opportunities but future focus?
- Drivers of sequestration limiting factor
- Barriers to soil carbon measurement spatial variability
- Barriers to soil carbon measurement temporal variability
- Measuring carbon: Stocks vs flows (profit/loss)
- Model Measure method
 - Flux towers
 - Remote sensing
 - Modelling